

Integrated Project: Gulf of Alaska Project

Ron Heintz

Ecosystem Science Review Juneau, Alaska May 2-6, 2016

The Gulf Ecosystem Survey Integrates Oceanography, Fishing, and Laboratory Data to Monitor Recruitment Processes.

Gulf of Alaska Is an Important Source of Protein

The Gulf Survey Evolved Out of Ecosystem Surveys Conducted by AFSC Starting in 1981

Line 8 in Shelikof Strait (Chlor, Nut, Bongo, MZ) Spring 1985-Present

Larval fish sampling since 1981

Zooplankton Spring 2010 -Present

Forage fish research since 2001

Ecosystem Monitoring in the Gulf of Alaska

EVOSTC Supported Datasets:

- Oceanographic
 - GAK-1 (45 yrs)
 - Seward Line (20 yrs)
 - Continuous Plankton Recording (20 yrs)
- Biological
 - Killer whales (32 yrs)
 - Marine Birds (25 yrs)
 - Herring (26 yrs)
- Established NPRB

Gulf of Alaska Assessment

Goal: Connect climate change and variability to ecosystem function a

- \bullet 1996 2004: late summer cross shelf transects integrated ecosystem survey focus on Pacific Salmon
- 2010 Present: summer systematic grid integrated ecosystem survey focus on groundfish/Pacific salmon
- Oustide Funding (NPRB, AKSSF, PSC, Globec)

How does the Gulf Ecosystem Survey Relate Fish to Environmental Conditions

Eastern Grid – annually Western Grid – Semi-annually

Station Activities

CTD

Water chemistry

Chl-A

Zoops small mesh

Zoops large mesh

Trawl

Count

Size

Diet

Energy

Why Monitor Recruitment Processes?

- . Improve stock assessments
- Connect production to environmental conditions

Sensitivity to Environmental Conditions

Higher

Lower

Application of Bioenergetics to Understand Recruitment Processes

Growth = Consumption – Respiration – SDA - Egestion

Integrates –

Temperature

Food quality

Food Availability (Production, Competition, Predation)

Comparison of Pollock and Cod Growth in GOA

Growth = Consumption – Respiration – SDA - Egestion

Approach

Estimate growth potential at each station Assume Cmax, constant size Use ambient temperature, diet quality

Temperature

Growth Potential for Pollock and Cod In Eastern and Western GOA

Pollock Better Able to Respond to Optimal Conditions

- Pollock most sensitive to changes in prey quality
- Cod growth
 unaffected by changes
 in prey quality or
 temperature

Patchy Distribution of Locations Favoring Pollock Growth

- Pollock habitat spotty
- Cod habitat ubiquitous

Pollock not always matched with good habitat

Food: Diets

Pacific cod vs. walleye pollock

- Cod diets more diverse
- Pollock
 consumed more
 large, lipid-rich
 copepods
- Few euphausiids

Zaleski, Moss, Heintz

Age-0 Cod and Pollock Employ Distinct Strategies

Walleye pollock

Gadus chalcogrammus

<u>Pollock – Sweepstakes Strategy</u> Larvae spread over broad spatial area, strong response to optimal conditions

Pacific cod

Gadus macrocephalus

Cod – Steady Strategy
Larvae retained in spawning
location, response tuned
to average conditions

Food: Energy Allocation strategies

 Cod are heavier than pollock at a given size (muscle mass)

 Pollock allocated more energy to lipids (energy stores)

Moss, Zaleski, Heintz

What Can We Learn from Energy Allocation Strategies?

- Identifies important life history stages migration, reproduction, winter, settling out
- How prevalent are the various strategies?
- Is there a relationship between strategy and survival constraints?
- What is the relationship between environmental variation and strategy?

Juvenile POP Energy Allocation

% Lipid= energy storage
RNA=protein synthesis (growth)

Summer Critical Size for Juvenile POP

Proportions of cohort that achieve critical size is variable across years.

Juvenile Energy Allocation States at High Latitudes a Response to Perceived Risk

Other Energy Allocation Strategies Can Exist

Stallings et al. 2010. Env. Bio. Fish. 88:389-398.

Bell. 2012. TAFS. 141:855-871.

Energy allocation strategies vary among species

Settlement Costs for Juvenile Pacific Ocean Perch

Settled POP Face Significant Mortality

Predation Rate (%) on YOY Black Rockfish

- Mortality is mostly at night
- Growth is highest during the day
- Rapid growth reduces predation risk

Habitat: Pacific cod Energetic condition before and after settlement, central GOA

- Recently settled larvae are larger and have smaller lipid stores
- Cost of settlement?

Heintz, Ormseth, Budge

Settled Age-0 Cod Grow with Lower Lipid

Bioenergetics Integrates Features Observed on the Gulf Survey and Indexes Ecosystem Status

- 1. Temperature
- 2. Food
- 3. Condition

Arrowtooth Flounder

Pacific Ocean Perch

Walleye Pollock

Sablefish

Pacific Cod

Management and assessment

- Early life history strategies differ greatly among species
- Hence different indices are needed to capture variability in transport, growth conditions, habitat suitability
- Species specific "report cards" to inform assessment and management

Sablefish report card

Management and assessment

 Indices predicting recruitment are promising but likely need refinement before they can improve recruitment estimates in assessment models

Next Steps...

Stakeholder Outreach at Alaska Marine Science Symposium

